Строение молекул (окончание)

Конспект лекции (с демонстрациями, используется технология Java)

Аннотация: Типы связей атомов в молекулах, электронная, колебательная и вращательная энергии молекул (с дополнением демонстрацией на компьютерной модели).

Содержание:


Молекулярные спектры

Молекула, как и атом, изменяя состояние электронной оболочки, излучает фотон. Однако энергия молекулы не определяется лишь электронной конфигурацией. Ядра молекулы могут колебаться относительно центра инерции, а молекула может вращаться как целое. Эти движения вносят свой вклад в общий баланс энергии. В первом приближении, энергия молекулы представима в виде

E = Eэл + Eкол + Eвр

где Eэл - энергия электронной оболочки, Eкол - энергия колебаний молекулы, Eвр - энергия вращения молекулы. Каждая из этих энергий, как говорилось выше, может принимать лишь дискретный ряд значений, определяемых целочисленным квантовым числом.

Опытные данные говорят, что

Eэл >> Eкол >> Eвр,

что приводит к тому, что колебательные движения ядер расщепляют электронные уровни, а вращательные движения в свою очередь расщепляют колебательные уровни.

 
 Рис.10 Схема уровней молекулы
 

На рис.10 построена схема уровней энергии двухатомной молекулы. Каждый из приведенных электронных уровней, обозначенных n и n+1, расщепляется на четыре колебательных уровня с квантовыми числами v=0, 1, 2, 3 . В свою очередь, колебательные уровни расщепляются на восемь вращательных уровней с квантовыми числами J=0, 1, 2, 3, 4, 5, 6, 7 . Уровни различных видов энергии разнесены по колонкам для лучшей детализации схемы.

При переходах между уровнями поглощается или испускается излучение. Энергия перехода

ΔE = ΔEэл + ΔEкол + ΔEвр

причем ΔEэл >> ΔEкол >> ΔEвр.

Фотоны, обладающие небольшой энергией, не меняя электронную конфигурацию и колебательную энергию, переводят молекулу из одного вращательного состояния в другое. Набор спектральных линий соответствующих таким переходам образует вращательные полосы. Такие полосы лежат в далекой инфракрасной области спектра.

Переходы между колебательными уровнями, требующие больше энергии, могут сопровождаться и изменением вращательной энергии. Они формируют колебательно - вращательные полосы спектра, лежащие в инфракрасной области.

В области видимого и ультрафиолетового спектра полосы формируются за счет переходов между электронными уровнями, а переходы с изменением и электронного и колебательного уровней формируют электронно-колебательные полосы.

Не все переходы между уровнями допустимы, должны выполняться правила отбора. Напомним, что изменения вращательных и колебательных квантовых чисел при переходах должно быть равно ±1.

 
 Рис.11 Типичное расщепление полосы спектра молекулы азота на спектральные линии
 

Спектры молекул достаточно сложны, вместе с тем они содержат всю полноту информации о строении молекулы.

Комбинационное рассеяние света

Если на вещество падает монохроматический свет, то в спектре рассеянного, помимо основной несмещенной линии, появляются линии смещенной частоты, называемые спутниками. Частоты спутников являются комбинациями частоты падающего света и частот колебательных и вращательных переходов рассеивающих молекул. Отсюда и название этого явления - комбинационное рассеяние света. Открыто это явление в 1928 году физиками из МГУ Мандельштамом и Лансбергом, и одновременно индийскими физиками Раманом и Кришнаном. За границей явление называют "рамановское рассеяние". В МГУ искали изменение частоты света за счет тепловых колебаний атомов, в Индии - аналог эффекта Комптона (открытого в 1925 году), а открыли новое явление.

Приведем основные экспериментально установленные закономерности:

Квантовая теория объясняет это явление неупругим столкновением фотона с молекулой. Пусть молекула, обладающая дискретным рядом состояний, находится в одном из них с энергией εn. Рассеиваясь на молекуле, фотон передаст ей часть энергии, переведя в состояниеεm. Если фотон обладал энергией 0, то закон сохранения энергии примет вид

Тогда частота рассеянного света

Если переход таков, что εn < εm, то Δυ < 0 и появляется красный спутник, если εn > εm, то Δυ > 0 и появляется фиолетовый спутник.

Интенсивность спутников пропорциональна заселенности энергетических уровней εn и εm. Верхние энергетические уровни заселены слабее, однако с ростом температуры их заселенность возрастает, что и приводит к росту интенсивности фиолетовых спутников.

Заметим, что все измерения проводятся в оптической области.

Появление лазеров привело к серьезному прогрессу в анализе, т.к. появилась возможность работать с одной линией спектра. Необходимое количество вещества для анализа уменьшилось до ~10-3 грамм.

Связанные осцилляторы. Силы Ван-дер-Ваальса

Как объяснить, например, сжижение благородных газов? Электронные оболочки заполнены полностью, и описанные выше типы связи не могут объяснить притяжение между атомами.

Более 100 лет назад Ван-дер-Ваальс обратил внимание на наличие слабых сил притяжения между нейтральными атомами или молекулами. В уравнение состояния реальных газов он ввел поправки, и оно выглядит так

Однако объяснение природа этих сил получила только после создания квантовой механики.

Рассмотрим два атома со сферически симметричным распределением зарядов. Квантовая механика показывает, что в основном состоянии колебания заряда не прекращаются (E0≠0). Посмотрим, к чему это приводит.

 
 Рис.12 связанные осцилляторы
 

В качестве простой модели рассмотрим два линейных осциллятора, удаленных на расстояние R и колеблющихся вдоль соединяющей их оси (рис.12). Положительные заряды неподвижны, x1 и x2 - отклонения электронов от положения равновесия в первом и втором осцилляторах. При небольших смещениях колебания будут гармоническими. В отсутствии другого потенциальная энергия каждого осциллятора , частота .

Энергия взаимодействия осцилляторов друг с другом равна

первые два слагаемых в скобках - соответственно отталкивание положительных зарядов друг от друга и отталкивание электронов; третье и четвертое слагаемые - притяжение электронов к положительным зарядам другого осциллятора. Приближенное равенство справедливо для x1,2 << R. Дроби разлагаются в ряд с ограничением первыми тремя членами разложения. Полная энергия двух осцилляторов выражается формулой (сумма кинетических энергий, потенциальных энергий и энергии взаимодействия осцилляторов)

Покажем, что взаимодействие приводит к расщеплению частоты υ0 → υ1 и υ2. Для этого представим E в таком виде, чтобы ее можно было рассматривать как сумму энергий осцилляторов, колеблющихся с измененными частотами. Заменой переменных выражение для E приводится к виду

- сумма энергий двух несвязанных осцилляторов с частотами

Мы видим, что система связанных осцилляторов имеет две различные частоты: одна из них немного меньше, а другая немного больше υ. Соответствующее квантово-механическое выражение для E выглядит так (энергия квантована)

где n1, n1 - квантовые числа; их возможные значения 0, 1, 2... .

Для основного состояния (с минимальной энергией, n1 и n1 равны нулю)

Учтем, что в выражении для частоты второе слагаемое под корнем много меньше первого (энергия связи электрона со своим центром много больше энергии связи осцилляторов). Выражения для частот разложим в ряд и ограничимся тремя членами разложения

Получим

Подставим эти выражения в формулу для E00 и окончательно

Видим, что полная энергия системы меньше удвоенной энергии отдельного осциллятора. Добавочная энергия отрицательна, т.е. связь заключается всегда в притяжении. Энергия связи

очень быстро убывает с увеличением межатомного расстояния R. Константу C можно вычислить для различных атомов из оптических данных и значений универсальных констант e, h, ε0. Энергия притяжения оказывается небольшой: ~10-5 ÷ 10-4 эВ на расстоянии 1 нм. Но ее достаточно для удержания атомов друг около друга при низких температурах.

Таким образом, появление сил межатомного притяжения в основном состоянии молекулы связано с существованием нулевой энергии колебаний.

Если атомы не обладают сферически симметричным распределением заряда, то их дипольный момент не равен нулю. В этом случае притяжение находит объяснение и в рамках классической физики.

 

Подведем итоги:




Контрольные вопросы

  1. Спектр излучения атомов - линейчатый, спектр излучения твердых тел - сплошной. А каков спектр излучения молекул?

  2. Как выглядит чисто вращательный спектр молекул?

  3. Как выглядит чисто колебательный спектр молекул??

  4. В какой части спектра находится излучение любых нагретых тел и молекул?

  5. Чем могут отличаться чисто вращательные спектры поглощения молекул HF и HBr?



Литература:

Если возникли какие-либо вопросы, напишите мне.